2021SC@SDUSC Application and practice of software engineering in school of software, Shandong University -- yoov5 code analysis torch_utils.py

2021SC@SDUSC

preface

This article analyzes torch in yolov5 code_ Utils.py file is mainly some encapsulated tool classes.

torch_distributed_zero_frist function

@contextmanager
def torch_distributed_zero_first(local_rank: int):
    """
    Decorator to make all processes in distributed training wait for each local_master to do something.
    """
    if local_rank not in [-1, 0]:
        dist.barrier(device_ids=[local_rank])
    yield
    if local_rank == 0:
        dist.barrier(device_ids=[0])

This function is used to deal with the synchronization problem during model distributed training. If the current process is not the main process, set a blocking fence to keep the process in a waiting state and wait for all processes to reach the fence; Release the fence when all processes reach the fence.

date_modified function

def date_modified(path=__file__):
    # return human-readable file modification date, i.e. '2021-3-26'
    t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
    return f'{t.year}-{t.month}-{t.day}'

Change the system time to a human readable time format

select_device function

def select_device(device='', batch_size=None):
    # device = 'cpu' or '0' or '0,1,2,3'
    s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} '  # string
    device = str(device).strip().lower().replace('cuda:', '')  # to string, 'cuda:0' to '0'
    cpu = device == 'cpu'
    if cpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = '-1'  # force torch.cuda.is_available() = False
    elif device:  # non-cpu device requested
        os.environ['CUDA_VISIBLE_DEVICES'] = device  # set environment variable
        assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested'  # check availability

    cuda = not cpu and torch.cuda.is_available()
    if cuda:
        devices = device.split(',') if device else '0'  # range(torch.cuda.device_count())  # i.e. 0,1,6,7
        n = len(devices)  # device count
        if n > 1 and batch_size:  # check batch_size is divisible by device_count
            assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
        space = ' ' * (len(s) + 1)
        for i, d in enumerate(devices):
            p = torch.cuda.get_device_properties(i)
            s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n"  # bytes to MB
    else:
        s += 'CPU\n'

    LOGGER.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s)  # emoji-safe
    return torch.device('cuda:0' if cuda else 'cpu')

This function selects the training device. When the parameter device is not empty, select the specified device, that is, cpu or gou; When the parameter device is empty, the device is automatically selected according to the machine situation, and gpu is preferred as the training device.

time_sync function

def time_sync():
    # pytorch-accurate time
    if torch.cuda.is_available():
        torch.cuda.synchronize()
    return time.time()

This function is used to accurately obtain the current time during distributed operation.

profile function

def profile(input, ops, n=10, device=None):
    # YOLOv5 speed/memory/FLOPs profiler
    #
    # Usage:
    #     input = torch.randn(16, 3, 640, 640)
    #     m1 = lambda x: x * torch.sigmoid(x)
    #     m2 = nn.SiLU()
    #     profile(input, [m1, m2], n=100)  # profile over 100 iterations

    results = []
    logging.basicConfig(format="%(message)s", level=logging.INFO)
    device = device or select_device()
    print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
          f"{'input':>24s}{'output':>24s}")

    for x in input if isinstance(input, list) else [input]:
        x = x.to(device)
        x.requires_grad = True
        for m in ops if isinstance(ops, list) else [ops]:
            m = m.to(device) if hasattr(m, 'to') else m  # device
            m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
            tf, tb, t = 0., 0., [0., 0., 0.]  # dt forward, backward
            try:
                flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2  # GFLOPs
            except:
                flops = 0

            try:
                for _ in range(n):
                    t[0] = time_sync()
                    y = m(x)
                    t[1] = time_sync()
                    try:
                        _ = (sum([yi.sum() for yi in y]) if isinstance(y, list) else y).sum().backward()
                        t[2] = time_sync()
                    except Exception as e:  # no backward method
                        print(e)
                        t[2] = float('nan')
                    tf += (t[1] - t[0]) * 1000 / n  # ms per op forward
                    tb += (t[2] - t[1]) * 1000 / n  # ms per op backward
                mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0  # (GB)
                s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
                s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
                p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0  # parameters
                print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
                results.append([p, flops, mem, tf, tb, s_in, s_out])
            except Exception as e:
                print(e)
                results.append(None)
            torch.cuda.empty_cache()
    return results

This function is used to output some relevant information in the training process, such as forward propagation time, back propagation time, shape of input variable, shape of output variable, etc.

initialize_weights function

def initialize_weights(model):
    for m in model.modules():
        t = type(m)
        if t is nn.Conv2d:
            pass  # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
        elif t is nn.BatchNorm2d:
            m.eps = 1e-3
            m.momentum = 0.03
        elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
            m.inplace = True

This function initializes the training parameters. The eps of BN is set to 1e-3, the momentum is set to 0.03, and the activation function inplace is True

find_modules function

def find_modules(model, mclass=nn.Conv2d):
    # Finds layer indices matching module class 'mclass'
    return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]

This function returns the index value of a module in the whole model

fuse_conv_and_bn function

def fuse_conv_and_bn(conv, bn):
    # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
    fusedconv = nn.Conv2d(conv.in_channels,
                          conv.out_channels,
                          kernel_size=conv.kernel_size,
                          stride=conv.stride,
                          padding=conv.padding,
                          groups=conv.groups,
                          bias=True).requires_grad_(False).to(conv.weight.device)

    # prepare filters
    w_conv = conv.weight.clone().view(conv.out_channels, -1)
    w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
    fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))

    # prepare spatial bias
    b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
    b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
    fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)

    return fusedconv

In the reasoning test stage, the function fuses the convolution layer and BN layer to accelerate the reasoning.

model_info function

def model_info(model, verbose=False, img_size=640):
    # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
    n_p = sum(x.numel() for x in model.parameters())  # number parameters
    n_g = sum(x.numel() for x in model.parameters() if x.requires_grad)  # number gradients
    if verbose:
        print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
        for i, (name, p) in enumerate(model.named_parameters()):
            name = name.replace('module_list.', '')
            print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
                  (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))

    try:  # FLOPs
        from thop import profile
        stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
        img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device)  # input
        flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2  # stride GFLOPs
        img_size = img_size if isinstance(img_size, list) else [img_size, img_size]  # expand if int/float
        fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] / stride)  # 640x640 GFLOPs
    except (ImportError, Exception):
        fs = ''

    LOGGER.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")

This function is used to output all the information of the model, including the number of all layers, the total parameters of the model, the total parameters of the gradient, img_size, size, etc.

load_classifier function

def load_classifier(name='resnet101', n=2):
    # Loads a pretrained model reshaped to n-class output
    model = torchvision.models.__dict__[name](pretrained=True)

    # ResNet model properties
    # input_size = [3, 224, 224]
    # input_space = 'RGB'
    # input_range = [0, 1]
    # mean = [0.485, 0.456, 0.406]
    # std = [0.229, 0.224, 0.225]

    # Reshape output to n classes
    filters = model.fc.weight.shape[1]
    model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
    model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
    model.fc.out_features = n
    return model

This function is used to perform secondary classification after detection, and change the output of fc layer of resnet to n, that is, the number of categories to be classified.

scale_img function

def scale_img(img, ratio=1.0, same_shape=False, gs=32):  # img(16,3,256,416)
    # scales img(bs,3,y,x) by ratio constrained to gs-multiple
    if ratio == 1.0:
        return img
    else:
        h, w = img.shape[2:]
        s = (int(h * ratio), int(w * ratio))  # new size
        img = F.interpolate(img, size=s, mode='bilinear', align_corners=False)  # resize
        if not same_shape:  # pad/crop img
            h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
        return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447)  # value = imagenet mean

This function is used to scale the picture. ratio is the scale to be scaled. When the same_ When shape is true, the scaled image size is required to be a multiple of gs.

EarlyStopping class

class EarlyStopping:
    # YOLOv5 simple early stopper
    def __init__(self, patience=30):
        self.best_fitness = 0.0  # i.e. mAP
        self.best_epoch = 0
        self.patience = patience or float('inf')  # epochs to wait after fitness stops improving to stop
        self.possible_stop = False  # possible stop may occur next epoch

    def __call__(self, epoch, fitness):
        if fitness >= self.best_fitness:  # >= 0 to allow for early zero-fitness stage of training
            self.best_epoch = epoch
            self.best_fitness = fitness
        delta = epoch - self.best_epoch  # epochs without improvement
        self.possible_stop = delta >= (self.patience - 1)  # possible stop may occur next epoch
        stop = delta >= self.patience  # stop training if patience exceeded
        if stop:
            LOGGER.info(f'EarlyStopping patience {self.patience} exceeded, stopping training.')
        return stop

This class is used for the early stop strategy during training, that is, stop training if the current evaluation index is worse than the values of the previous epochs. patience is the tolerance, that is, the maximum value of the difference between the best epoch and the current epoch. When the difference between the current epoch and the best epoch is greater than this value and the current epoch index is not the best, stop training for a long time. Early stop strategy is a common method to prevent training over fitting.

summary

This article analyzes some pytorch tools and methods used, including some training and testing strategies, which are related to pytorch.

Keywords: neural networks Pytorch Deep Learning yolov5

Added by kkibak on Wed, 08 Dec 2021 05:32:00 +0200