Title Description
Give two numbers a,b, and find out the number of numbers whose sum of the numbers in [a,b] can divide the original number by integral.
I / O format
Input format:
One line, two integers a and b
Output format:
An integer indicating the answer
Example of input and output
Input example ා 1: copy
10 19
Output example: copy
3
Significant digit dp;
What we need is each number and the number that can be divided by the original number;
But the scope reaches, array range cannot be opened;
What should I do? Considering modulus;
Let's enumerate modules. If the sum of modules can be divided by integers and the current module is the sum of all the digits, then the answer will be + 1;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize("O3") using namespace std; #define maxn 100005 #define inf 0x3f3f3f3f #define INF 999999999999999 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 100003 #define sq(x) (x)*(x) #define eps 1e-3 typedef pair<int, int> pii; #define pi acos(-1.0) const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } ll sqr(ll x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ ll dp[30][200][200]; int a[30]; ll sum; ll MOD; ll dfs(int pos, int lead, int limit, ll sum, ll mod) { ll ans = 0; if (pos == 0 && lead) { if (sum == MOD && mod == 0)return 1; return 0; } if (limit == 0 && lead&&dp[pos][sum][mod] != -1)return dp[pos][sum][mod]; int up = limit ? a[pos] : 9; for (int i = 0; i <= up; i++) { ans += dfs(pos - 1, lead || i, limit && (i == up), sum + i, (mod * 10 + i) % MOD); } if (lead&&limit == 0)dp[pos][sum][mod] = ans; return ans; } ll sol(ll x) { int pos = 0; while (x) { a[++pos] = x % 10; x /= 10; } ll ans = 0; for (MOD = 1; MOD <= 9 * pos; MOD++) { memset(dp, -1, sizeof(dp)); ans += dfs(pos, 1, 1, 0, 0); } return ans; } int main() { //ios::sync_with_stdio(false); ll a, b; rdllt(a); rdllt(b); cout << sol(b) - sol(a - 1) << endl; return 0; }