apdl stress stiffening and rotational softening

Rotational softening and stress stiffening

Plate rotation
Two units: shell181 and solid185. Analyze five situations: static, 3200rpm around the x axis at y=-0.1, 9600rpm around the x axis at y=-0.1, 3200rpm around the z axis at y=-0.1, and 9600rpm around the z axis at y=-0.1.
Only the first-order modal frequency is extracted, so 10 results are obtained.

The verification manual points out that when the plate rotates around the x-axis, both stress stiffening and rotation softening affect the bending mode; When rotating around the z-axis, the influence of rotation softening on the bending mode can be ignored.
The stress stiffening and rotation softening here are caused by the centrifugal force during rotation. First carry out nonlinear static analysis, and then linear pertubation modal analysis. The block Lanczos eigensolver is used to calculate the eigenvalues.

for instance:

A rod has elasticity but no mass, and a mass ball at one end rotates around an axis. The centrifugal force will lengthen the rod and increase the centrifugal force, which is rotation softening; However, the axial force of the rod increases the transverse stiffness and the transverse bending modal frequency, which is stress stiffness.

SHELL181 is suitable for analyzing thin and medium thickness plate and shell structural parts. It has four nodes in a unit, and each node has six degrees of freedom, that is, moving degrees of freedom and rotating degrees of freedom along the X, Y and Z directions. (if the film option is selected, the unit can only use degrees of freedom of movement). The degenerate triangle option can only be used in filtering unitized grids.
SHELL181 supports linear, large torsion and large strain, variable thickness nonlinear analysis. It can be used in both complete method and reduction method, and can be used for distributed load and stress stiffening.
SHELL181 can be used for multilayer material models. The accuracy of plate and shell modeling is determined by Mindlin Reissner shell theory.
In case of convergence difficulties, SHELL181 is used to replace SHELL43 unit. For details of this unit, please refer to ANSYS, In


solid185 unit has 8 nodes, and each node has three degrees of freedom. Therefore, compared with the upper and lower figures, the node degrees of freedom at y=0 are constrained, but the yellow part in the above figure is the rotation degrees of freedom.

code

Due to the * VWRITE command, it can only be run in batch

/clear
/COM,ANSYS MEDIA REL. 150 (11/8/2013) REF. VERIF. MANUAL: REL. 150
/VERIFY,VM281
/TITLE,VM281,EFFECT OF STRESS STIFFENING AND SPIN SOFTENING ON A ROTATING PLATE
/COM,
/COM, REFERENCE: NASA TECHNICAL MEMORANDUM 89861,PAGE 14,FIGURE 7
/COM,
/COM, =====================================================================
/COM,  MODELING THE PLATE USING 4-NODE STRUCTURAL SHELL ELEMENT (SHELL181)
/COM, ======================================================================
/PREP7
lg = 152.4e-3       ! LENGTH IN METERS 
wd = 50.8e-3        ! WIDTH IN METERS
tk = 2.54e-3        ! THICKNESS IN METERS
K,1,-wd/2,0,0   ! Defines a keypoint.
K,2,+wd/2,0,0
K,3,+wd/2,lg,0
K,4,-wd/2,lg,0
A,1,2,3,4     ! Defines an area by connecting keypoints.
/COM, MATERIAL PROPERTIES OF STRUCTURAL STEEL PLATE
MP,EX,1,2.0e+11   ! 1 Modulus of elasticity of material No 
MP,DENS,1,7850    !  1 Density of material No
MP,NUXY,1,0.3      ! 1 Poisson's ratio of material No
ET,1,SHELL181       ! 4-NODE STRUCTURAL SHELL ELEMENT
SECTYPE,1,SHELL  ! Defining shell element sections
SECDATA,tk,1,10,3    ! THICKNESS  Angle integral point of thickness layer coordinate system relative to element coordinate system
TYPE,1 !Set current cell
MAT,1 !Set current material
SECNUM,1  !Sets the current section
ESIZE,5e-3 !Length of division unit
AMESH,1 !Dividing surface element
NSEL,S,LOC,Y,0.0 !Select y=0 All nodes of
D,ALL,ALL        ! CONSTRAINING ALL DOF AT BASE
ALLSEL,ALL
CM,PLATE,ELEM       ! FORMING A COMPONENT WITH ALL ELEMENTS
SAVE,SHELL,DB       ! SAVE THE DATABASE
FINISH

/COM, ----------------------
/COM, NO ROTATION static
/COM, ----------------------
/OUT,SCRATCH
/SOLUTION
ANTYPE,MODAL   ! modal analysis 
MODOPT,LANB,4       ! EXTRACT 4 MODES USING BLOCK-LANCZOS 
MXPAND,4  !http://blog.sina.com.cn/s/blog_9b0ec2070102z2mu.html
SOLVE
/OUT,
*GET,FREQ1_SH,MODE,1,FREQ    ! *GET Solution Items, Entity = MODE Extract the first-order modal frequency and assign it to FREQ1_SH
FINISH
/DELETE,,rst  ! delete rst file

/COM, --------------------------------------
/COM, PLATE ROTATED ALONG X AXIS AT 3200 RPM Round x Shaft 3200 rpm    The prestress generated by centrifugal force is added to the modal analysis
/COM, --------------------------------------
/OUT,SCRATCH   ! /OUTPUT of Notes
/SOLUTION
ANTYPE,STATIC ! static analysis 
OFFSET= -0.1
pi = acos(-1)
CMOMEGA,PLATE,3200*pi/30,,,0,OFFSET,0,1,OFFSET,0        ! ROTATING THE PLATE ALONG X AXIS
NLGEOM,ON                                               ! NON-LINEAR ANALYSIS
TIME,1.0 ! The load step time is 1
AUTOTS,ON   !  Automatic load step
NSUBS,10,100,1   ! Sub step: 10 steps, minimum 1 step, maximum 100 steps
OUTRES,ALL,ALL
SOLVE
FINISH
/SOLUTION
ANTYPE,STATIC,RESTART,,,PERTURB                         ! LINEAR PERTURBATION ANALYSIS  Prestressed modal analysis
PERTURB,MODAL,                                          ! MODAL ANALYSIS,RETAIN CMOMEGA  
SOLVE,ELFORM                                            ! REGENERATE STIFFNESS MATRIX    Regenerate cell matrix
MODOPT,LANB,4
MXPAND,4
SOLVE
/OUT,
*GET,FREQ2_SH,MODE,1,FREQ ! *GET Solution Items, Entity = MODE Extract the first-order modal frequency and assign it to FREQ2_SH
FINISH
/DELETE,,rst
/DELETE,,rstp

/COM, --------------------------------------
/COM, PLATE ROTATED ALONG X AXIS AT 9600 RPM
/COM, --------------------------------------
/OUT,SCRATCH
/SOLUTION
ANTYPE,STATIC
OFFSET= -0.1
pi = acos(-1)
CMOMEGA,PLATE,9600*pi/30,,,0,OFFSET,0,1,OFFSET,0        ! ROTATING THE PLATE ALONG X AXIS
NLGEOM,ON                                               ! NON-LINEAR ANALYSIS
TIME,1.0
AUTOTS,ON
NSUBS,10,100,1
OUTRES,ALL,ALL
SOLVE
FINISH

/SOLUTION
ANTYPE,STATIC,RESTART,,,PERTURB                         ! LINEAR PERTURBATION ANALYSIS
PERTURB,MODAL,                                          ! MODAL ANALYSIS,RETAIN CMOMEGA
SOLVE,ELFORM                                            ! REGENERATE STIFFNESS MATRIX
MODOPT,LANB,4
MXPAND,4
SOLVE
/OUT,
*GET,FREQ3_SH,MODE,1,FREQ    ! *GET Solution Items, Entity = MODE Extract the first-order modal frequency and assign it to FREQ3_SH
FINISH
/DELETE,,rst
/DELETE,,rstp

/COM, --------------------------------------
/COM, PLATE ROTATED ALONG Z AXIS AT 3200 RPM
/COM, --------------------------------------
/OUT,SCRATCH
/SOLUTION
ANTYPE,STATIC
OFFSET= -0.1
pi = acos(-1)
CMOMEGA,PLATE,3200*pi/30,,,0,OFFSET,0,0,OFFSET,1        ! ROTATING THE PLATE ALONG Z AXIS
NLGEOM,ON                                               ! NON-LINEAR ANALYSIS
TIME,1.0
AUTOTS,ON
NSUBS,10,100,1
OUTRES,ALL,ALL
SOLVE
FINISH
/SOLUTION
ANTYPE,STATIC,RESTART,,,PERTURB                         ! LINEAR PERTURBATION ANALYSIS
PERTURB,MODAL,                                          ! MODAL ANALYSIS,RETAIN CMOMEGA
SOLVE,ELFORM                                            ! REGENERATE STIFFNESS MATRIX
MODOPT,LANB,4
MXPAND,4
SOLVE
/OUT,
*GET,FREQ4_SH,MODE,1,FREQ
FINISH
/DELETE,,rst
/DELETE,,rstp

/COM, --------------------------------------
/COM, PLATE ROTATED ALONG Z AXIS AT 9600 RPM
/COM, --------------------------------------
/OUT,SCRATCH
/SOLUTION
ANTYPE,STATIC
OFFSET= -0.1
pi = acos(-1)
CMOMEGA,PLATE,9600*pi/30,,,0,OFFSET,0,0,OFFSET,1        ! ROTATING THE PLATE ALONG Z AXIS
NLGEOM,ON                                               ! NON-LINEAR ANALYSIS
TIME,1.0
AUTOTS,ON
NSUBS,10,100,1
OUTRES,ALL,ALL
SOLVE
FINISH
/SOLUTION
ANTYPE,STATIC,RESTART,,,PERTURB                         ! LINEAR PERTURBATION ANALYSIS
PERTURB,MODAL,                                          ! MODAL ANALYSIS,RETAIN CMOMEGA
SOLVE,ELFORM                                            ! REGENERATE STIFFNESS MATRIX
MODOPT,LANB,4
MXPAND,4
SOLVE
/OUT,
*GET,FREQ5_SH,MODE,1,FREQ
FINISH

/OUT,SCRATCH
*DIM,LABEL,CHAR,5,2
*DIM,VALUE,,5,3
LABEL(1,1) = 'None'
LABEL(1,2) = '0rpm'
LABEL(2,1) = 'X axis'
LABEL(2,2) = '3200rpm'
LABEL(3,1) = 'X axis'
LABEL(3,2) = '9600rpm'
LABEL(4,1) = 'Z axis'
LABEL(4,2) = '3200rpm'
LABEL(5,1) = 'Z axis'
LABEL(5,2) = '9600rpm'
*VFILL,VALUE(1,1),DATA,90
*VFILL,VALUE(1,2),DATA,FREQ1_SH
*VFILL,VALUE(1,3),DATA,(90/FREQ1_SH)
*VFILL,VALUE(2,1),DATA,108
*VFILL,VALUE(2,2),DATA,FREQ2_SH
*VFILL,VALUE(2,3),DATA,(108/FREQ2_SH)
*VFILL,VALUE(3,1),DATA,195
*VFILL,VALUE(3,2),DATA,FREQ3_SH
*VFILL,VALUE(3,3),DATA,(195/FREQ3_SH)
*VFILL,VALUE(4,1),DATA,121
*VFILL,VALUE(4,2),DATA,FREQ4_SH
*VFILL,VALUE(4,3),DATA,(121/FREQ4_SH)
*VFILL,VALUE(5,1),DATA,250
*VFILL,VALUE(5,2),DATA,FREQ5_SH
*VFILL,VALUE(5,3),DATA,(250/FREQ5_SH)
SAVE,TABLE_1
FINISH


/CLEAR,NOSTART
/OUT,
/COM, =====================================================================
/COM,  MODELING THE PLATE USING 8-NODE STRUCTURAL SOLID ELEMENT (SOLID185)
/COM, ======================================================================
/PREP7
lg = 152.4e-3       ! LENGTH IN METERS 
wd = 50.8e-3        ! WIDTH IN METERS
tk = 2.54e-3        ! THICKNESS IN METERS
K,1,-wd/2,0,0
K,2,+wd/2,0,0
K,3,+wd/2,lg,0
K,4,-wd/2,lg,0
K,5,-wd/2,0,tk
K,6,+wd/2,0,tk
K,7,+wd/2,lg,tk
K,8,-wd/2,lg,tk
V,1,2,3,4,5,6,7,8
/COM, MATERIAL PROPERTIES OF STRUCTURAL STEEL PLATE
MP,EX,1,2.0e+11    

MP,DENS,1,7850      
MP,NUXY,1,0.3      
ET,1,SOLID185       ! 3-D 8 NODE STRUCTURAL SOLID ELEMENT
KEYOPT,1,2,3        ! SIMPLIFIED ENHANCED STRAIN FORMULATION
TYPE,1
MAT,1
ESIZE,5e-3
VMESH,1
NSEL,S,LOC,Y,0.0
D,ALL,ALL           ! CONSTRAINING ALL DOF AT BASE
ALLSEL,ALL
CM,PLATE,ELEM       ! FORMING A COMPONENT WITH ALL ELEMENTS
SAVE,SOLID,DB       ! SAVE THE DATABASE
FINISH
/COM, ----------------------
/COM, NO ROTATION
/COM, ----------------------
/OUT,SCRATCH
/SOLUTION
ANTYPE,MODAL
MODOPT,LANB,4       ! EXTRACT 4 MODES USING BLOCK-LANCZOS 
MXPAND,4
SOLVE
/OUT,
*GET,FREQ1_SO,MODE,1,FREQ
FINISH
/DELETE,,rst
/COM, --------------------------------------
/COM, PLATE ROTATED ALONG X AXIS AT 3200RPM
/COM, --------------------------------------
/OUT,SCRATCH
/SOLUTION
ANTYPE,STATIC
OFFSET= -0.1
pi = acos(-1)
CMOMEGA,PLATE,3200*pi/30,,,0,OFFSET,0,1,OFFSET,0        ! ROTATING THE PLATE ALONG X AXIS
NLGEOM,ON                                               ! NON-LINEAR ANALYSIS
TIME,1.0
AUTOTS,ON
NSUBS,10,100,1
OUTRES,ALL,ALL
SOLVE
FINISH
/SOLUTION
ANTYPE,STATIC,RESTART,,,PERTURB                         ! LINEAR PERTURBATION ANALYSIS
PERTURB,MODAL,                                          ! MODAL ANALYSIS,RETAIN CMOMEGA
SOLVE,ELFORM                                            ! REGENERATE STIFFNESS MATRIX
MODOPT,LANB,4
MXPAND,4
SOLVE
/OUT,
*GET,FREQ2_SO,MODE,1,FREQ
FINISH
/DELETE,,rst
/DELETE,,rstp
/COM, --------------------------------------
/COM, PLATE ROTATED ALONG X AXIS AT 9600RPM
/COM, --------------------------------------

/OUT,SCRATCH
/SOLUTION
ANTYPE,STATIC
OFFSET= -0.1
pi = acos(-1)
CMOMEGA,PLATE,9600*pi/30,,,0,OFFSET,0,1,OFFSET,0        ! ROTATING THE PLATE ALONG X AXIS
NLGEOM,ON                                               ! NON-LINEAR ANALYSIS
TIME,1.0
AUTOTS,ON
NSUBS,10,100,1
OUTRES,ALL,ALL
SOLVE
FINISH
/SOLUTION
ANTYPE,STATIC,RESTART,,,PERTURB                         ! LINEAR PERTURBATION ANALYSIS
PERTURB,MODAL,                                          ! MODAL ANALYSIS,RETAIN CMOMEGA
SOLVE,ELFORM                                            ! REGENERATE STIFFNESS MATRIX
MODOPT,LANB,4
MXPAND,4
SOLVE
/OUT,
*GET,FREQ3_SO,MODE,1,FREQ
FINISH
/DELETE,,rst
/DELETE,,rstp
/COM, --------------------------------------
/COM, PLATE ROTATED ALONG Z AXIS AT 3200RPM
/COM, --------------------------------------
/OUT,SCRATCH
/SOLUTION
ANTYPE,STATIC
OFFSET= -0.1
pi = acos(-1)
CMOMEGA,PLATE,3200*pi/30,,,0,OFFSET,0,0,OFFSET,1        ! ROTATING THE PLATE ALONG Z AXIS
NLGEOM,ON                                               ! NON-LINEAR ANALYSIS
TIME,1.0
AUTOTS,ON
NSUBS,10,100,1
OUTRES,ALL,ALL
SOLVE
FINISH
/SOLUTION
ANTYPE,STATIC,RESTART,,,PERTURB                         ! LINEAR PERTURBATION ANALYSIS
PERTURB,MODAL,                                          ! MODAL ANALYSIS,RETAIN CMOMEGA
SOLVE,ELFORM                                            ! REGENERATE STIFFNESS MATRIX
MODOPT,LANB,4
MXPAND,4
SOLVE
/OUT,
*GET,FREQ4_SO,MODE,1,FREQ
FINISH
/DELETE,,rst
/DELETE,,rstp
/COM, --------------------------------------
/COM, PLATE ROTATED ALONG Z AXIS AT 9600RPM
/COM, --------------------------------------
/OUT,SCRATCH
/SOLUTION
ANTYPE,STATIC
OFFSET= -0.1
pi = acos(-1)
CMOMEGA,PLATE,9600*pi/30,,,0,OFFSET,0,0,OFFSET,1        ! ROTATING THE PLATE ALONG Z AXIS

NLGEOM,ON                                               ! NON-LINEAR ANALYSIS
TIME,1.0
AUTOTS,ON
NSUBS,10,100,1
OUTRES,ALL,ALL
SOLVE
FINISH
/SOLUTION
ANTYPE,STATIC,RESTART,,,PERTURB                         ! LINEAR PERTURBATION ANALYSIS
PERTURB,MODAL,                                          ! MODAL ANALYSIS,RETAIN CMOMEGA
SOLVE,ELFORM                                            ! REGENERATE STIFFNESS MATRIX
MODOPT,LANB,4
MXPAND,4
SOLVE
/OUT,
*GET,FREQ5_SO,MODE,1,FREQ
FINISH
/OUT,SCRATCH
*DIM,LABEL,CHAR,5,2
*DIM,VALUE,,5,3
LABEL(1,1) = 'None'
LABEL(1,2) = '0rpm'
LABEL(2,1) = 'X axis'
LABEL(2,2) = '3200rpm'
LABEL(3,1) = 'X axis'
LABEL(3,2) = '9600rpm'
LABEL(4,1) = 'Z axis'
LABEL(4,2) = '3200rpm'
LABEL(5,1) = 'Z axis'
LABEL(5,2) = '9600rpm'
*VFILL,VALUE(1,1),DATA,90
*VFILL,VALUE(1,2),DATA,FREQ1_SO
*VFILL,VALUE(1,3),DATA,(90/FREQ1_SO)
*VFILL,VALUE(2,1),DATA,108
*VFILL,VALUE(2,2),DATA,FREQ2_SO
*VFILL,VALUE(2,3),DATA,(108/FREQ2_SO)
*VFILL,VALUE(3,1),DATA,195
*VFILL,VALUE(3,2),DATA,FREQ3_SO
*VFILL,VALUE(3,3),DATA,(195/FREQ3_SO)
*VFILL,VALUE(4,1),DATA,121
*VFILL,VALUE(4,2),DATA,FREQ4_SO
*VFILL,VALUE(4,3),DATA,(121/FREQ4_SO)
*VFILL,VALUE(5,1),DATA,250
*VFILL,VALUE(5,2),DATA,FREQ5_SO
*VFILL,VALUE(5,3),DATA,(250/FREQ5_SO)
SAVE,TABLE_2
FINISH
/NOPR
RESUME,TABLE_1  ! 
/GOPR
/OUT,vm281,vrt
/COM,
/COM, -----------------------------VM281 RESULTS COMPARISON-----------------------
/COM,
/COM,                           | TARGET | MECHANICAL APDL | RATIO
/COM,
/COM,
/COM,  USING SHELL181 ELEMENTS
/COM,
*VWRITE,LABEL(1,1),LABEL(1,2),VALUE(1,1),VALUE(1,2),VALUE(1,3)   ! https://www.cnblogs.com/gaozihan/p/11200897.html
(1X,A8,'   ',A8,'   ',F12.3,'    ',F12.3,'    ',F8.3)
/COM,
/COM,  USING SOLID185 ELEMENTS
/COM,
/NOPR,
RESUME,TABLE_2
/GOPR,
/COM,
*VWRITE,LABEL(1,1),LABEL(1,2),VALUE(1,1),VALUE(1,2),VALUE(1,3)
(1X,A8,'   ',A8,'   ',F12.3,'    ',F12.3,'    ',F8.3)
/COM,
/COM,---------------------------------------------------------------------------------
/OUT,
*LIST,vm281,vrt   ! Output results to vm281.vert
FINISH
http://blog.sina.com.cn/s/blog_153e0668a0102x1zg.html large deformation analysis (NLGEOM,ON) includes stress stiffening effect (SSTIF,ON)
https://www.bridgehead.com.cn/thread-3367-1-1.html

Output results

  -----------------------------VM281 RESULTS COMPARISON-----------------------
  
                            | TARGET | MECHANICAL APDL | RATIO
  
  
   USING SHELL181 ELEMENTS
  
 None       0rpm             90.000          90.831       0.991
 X axis     3200rpm         108.000         108.273       0.997
 X axis     9600rpm         195.000         195.139       0.999
 Z axis     3200rpm         121.000         120.686       1.003
 Z axis     9600rpm         250.000         252.359       0.991
  
   USING SOLID185 ELEMENTS
  

 PRINTOUT RESUMED BY /GOP
  
 None       0rpm             90.000          90.875       0.990
 X axis     3200rpm         108.000         108.324       0.997
 X axis     9600rpm         195.000         195.237       0.999
 Z axis     3200rpm         121.000         120.725       1.002
 Z axis     9600rpm         250.000         252.419       0.990
  
 -------------------------------------------------------------------------------

Add another example

An episode: the command d,1,all,10,9 is mistakenly entered as d,1,all,10.9
D, Node, Lab, VALUE, VALUE2, NEND, NINC, Lab2, Lab3, Lab4, Lab5, Lab6
d. 1, all, 10.9 means that the degrees of freedom of nodes 1-11 are constrained
d. 1, all, 10.4 means that the degrees of freedom of 1-10 nodes are constrained, so the parameter nend is rounded, and the step size of ninc is 1 by default
d. 1, all, 10.9 and 3 mean that the degrees of freedom of nodes 1, 4, 7 and 10 are constrained
d. 1, all, 10, 9 means that nodes 1 and 10 are constrained

fini
/clear

/prep7
et,1,shell63,,,,,,,1
r,1,3e-3
mp,ex,1,217e9
mp,nuxy,1,0.3
mp,dens,1,7850
n,1,-0.014,,0.15
n,9,-0.014,,0.478
fill
ngen,2,9,1,9,1,0.028
e,1,2,11,10
egen,8,1,-1
finish

!  no stress stiff and no spin soft
/solu
d,1,all,,,10,9   
antype,modal
modopt,subsp,5
solve
!/post1
!set,list
*GET,FREQ1,MODE,1,FREQ
fini

! with stress stiff and no spin soft
/solu
antype,static
pstres,on
omega,314.159265
outpr,,1
solve
fini

/solu
antype,modal
modopt,subsp,5
pstres,on
omega,314.159265,,,0
solve
!/post1
!set,list
*GET,FREQ2,MODE,1,FREQ
fini

! with stress stiff and with spin soft
/solu
antype,modal
modopt,subsp,5
pstres,on   !  Including stress stiffening
omega,314.159265,,,1   ! Including rotational softening
solve
!/post1
!set,list
*GET,FREQ3,MODE,1,FREQ
fini

First order natural frequency
no stress stiff and no spin soft: 23.96
with stress stiff and no spin soft: 72.21
with stress stiff and with spin soft: 52.01

contrast

Both paragraphs consider stress stiffening and rotation softening, but the codes used are different
shell63 does not support prestressed modal analysis, and shell181 is used for comparison

Fang 1
fini
/clear

/prep7
et,1,shell181,,,,,,,1
r,1,3e-3
mp,ex,1,217e9
mp,nuxy,1,0.3
mp,dens,1,7850
n,1,-0.014,,0.15
n,9,-0.014,,0.478
fill
ngen,2,9,1,9,1,0.028
e,1,2,11,10
egen,8,1,-1
finish

! Fang 1
/solu
d,1,all,,,10,9   
antype,static
omega,314.159265
NLGEOM,ON  
TIME,1.0 ! The load step time is 1
AUTOTS,ON   !  Automatic load step
NSUBS,10,100,1   ! Sub step: 10 steps, minimum 1 step, maximum 100 steps
outpr,,1
solve
fini

/SOLUTION
ANTYPE,STATIC,RESTART,,,PERTURB    
PERTURB,MODAL
SOLVE,ELFORM  
modopt,subsp,5
solve
*GET,method1_freq1,MODE,1,FREQ
*GET,method1_freq2,MODE,2,FREQ
*GET,method1_freq3,MODE,3,FREQ
*GET,method1_freq4,MODE,4,FREQ
*GET,method1_freq5,MODE,5,FREQ
fini
Fang 2
fini
/clear

/prep7
et,1,shell181,,,,,,,1
r,1,3e-3
mp,ex,1,217e9
mp,nuxy,1,0.3
mp,dens,1,7850
n,1,-0.014,,0.15
n,9,-0.014,,0.478
fill
ngen,2,9,1,9,1,0.028
e,1,2,11,10
egen,8,1,-1
finish

! Fang 2
/solu
d,1,all,,,10,9   
antype,static
pstres,on
omega,314.159265
outpr,,1
solve
fini

/solu
antype,modal
modopt,subsp,5
pstres,on   !  Including stress stiffening
omega,314.159265,,,1   ! Including rotational softening
solve
*GET,method2_freq1,MODE,1,FREQ
*GET,method2_freq2,MODE,2,FREQ
*GET,method2_freq3,MODE,3,FREQ
*GET,method2_freq4,MODE,4,FREQ
*GET,method2_freq5,MODE,5,FREQ
fini

NLGEOM can only be used for static and full transient analysis.

NLGEOM,ON
There are two kinds of large deflection effects: large deflection (large rotation) effect and large strain effect, depending on the element type. When NLGEOM is turned on, the stress stiffening effect will also be automatically included

The first five modal frequencies of the two methods are compared

Slightly different

Why are the results different

Both codes are verification manuals. The former is version 15, and the latter is not found in version 15. I guess it is old. (check the command of version 2021). Now the OMEGA command has only three parameters, and there is no fourth parameter to set rotation softening. In CORIOLIS, rotation softening is mentioned as the default consideration of ansys.

Thermal fluid solid coupling

Fluid solid coupling
Thermo solid coupling
Heat flow coupling
Thermal fluid solid coupling

Added by Darkwoods on Sat, 15 Jan 2022 11:31:20 +0200