Experience
Teacher Du's magic is obscene. Most of them don't understand the principle, but they just need to set a board.
Plate finishing
Taking the bullock multi-school B question in 2019 as an example, the vector named ans is inserted from dp[0] to dp[2*k].
When item n is required, direct linear_seq::(gao,n) is enough.
If you don't put item 0, it's linear_seq::(gao,n-1)
Generally, 7-8 guarantees of violence are absolutely correct. If you don't feel confident, you can make several more guarantees.
dp linear recurrence formulas commonly used for fast power of matrices
#include<bits/stdc++.h> using namespace std; typedef long long ll; const ll mod=1e9+7; const int N=1024; ll modpow(ll a,ll b,ll mod) {ll res=1;a%=mod; for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} ll inv(ll x){return modpow(x,mod-2,mod);} namespace linear_seq { #define rep(i,a,n) for (int i=a;i<n;i++) #define per(i,a,n) for (int i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) typedef vector<int> VI; typedef pair<int,int> PII; typedef long long ll; const ll mod=1e9+7; const int N=10010; ll res[N],base[N],_c[N],_md[N]; ll modpow(ll a,ll b,ll mod) {ll res=1;a%=mod; for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} vector<int> Md; void mul(ll *a,ll *b,int k) { rep(i,0,k+k) _c[i]=0; rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod; for (int i=k+k-1;i>=k;i--) if (_c[i]) rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod; rep(i,0,k) a[i]=_c[i]; } int solve(ll n,VI a,VI b) { // Initial value b[n+1]=a[0]*b[n]+... // printf("%d\n",SZ(b)); ll ans=0,pnt=0; int k=SZ(a); // assert(SZ(a)==SZ(b)); rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1; Md.clear(); rep(i,0,k) if (_md[i]!=0) Md.push_back(i); rep(i,0,k) res[i]=base[i]=0; res[0]=1; while ((1ll<<pnt)<=n) pnt++; for (int p=pnt;p>=0;p--) { mul(res,res,k); if ((n>>p)&1) { for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0; rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod; } } rep(i,0,k) ans=(ans+res[i]*b[i])%mod; if (ans<0) ans+=mod; return ans; } VI BM(VI s) { VI C(1,1),B(1,1); int L=0,m=1,b=1; rep(n,0,SZ(s)) { ll d=0; rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod; if (d==0) ++m; else if (2*L<=n) { VI T=C; ll c=mod-d*modpow(b,mod-2,mod)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; L=n+1-L; B=T; b=d; m=1; } else { ll c=mod-d*modpow(b,mod-2,mod)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; ++m; } } return C; } int gao(VI a,ll n) { VI c=BM(a); c.erase(c.begin()); rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod; return solve(n,c,VI(a.begin(),a.begin()+SZ(c))); } }; vector<int>ans; ll dp[2*N],p,n; int t,k; int main() { scanf("%d",&t); while(t--) { scanf("%d%lld",&k,&n); if(n==-1) { printf("%lld\n",2*inv(k+1)%mod);//2/(k-1) continue; } p=inv(k); dp[0]=1;//dp[n]=1/k dp[n-1] +1/k dp[n-2]+...+1/k dp[n-k] ans.clear(); ans.push_back(dp[0]); for(int i=1;i<=2*k;++i) { dp[i]=0; for(int j=max(i-k,0);j<i;++j) { dp[i]=(dp[i]+dp[j])%mod; } dp[i]=dp[i]*p%mod;//1/k ans.push_back(dp[i]); } printf("%d\n",linear_seq::gao(ans,n)); } return 0; }