This paper mainly introduces the analysis of OSGB binary data of tilt photography data. Firstly, it briefly introduces the relevant technologies of OpenSceneGraph, and introduces the organizational structure of tilt photography data, focusing on the analysis of relevant fields of OSGB format. Finally, it analyzes OSGB data byte by byte, visualizes the data through OpenSceneGraph, and optimizes the visualization of tilt photography data.
preface
OpenSceneGraph is an open source, cross platform high-performance 3D graphics toolkit. It is completely written in standard C + + and OpenGL and can be used for 3D simulation. The multithreading technology and PagedLOD technology contained in OSG can easily process the visualization and scheduling of 3D models of big data. OSGB format data is the own format of OpenSceneGraph framework, which is a kind of binary data. Tilt photography data is data in a tree structure organized in OSGB format.1, OpenSceneGraph
1. Visualization of osgb data
1.1 the results of OSGB data visualization are as follows:
2. OSGB data viewing
2.1 the binary osgb data can be converted into text formats osgt, OSG, etc. through OSG's own data conversion tool osgconv, you can directly open and view osgb data. The number of converted files is as follows:
#Ascii Scene #Version 161 #Generator OpenSceneGraph 3.6.5 osg::PagedLOD { UniqueID 1 CenterMode USER_DEFINED_CENTER UserCenter 11406.1 -2410.49 14.3884 34.9388 RangeMode PIXEL_SIZE_ON_SCREEN RangeList 2 { 0 17.4694 17.4694 1e+30 } DatabasePath TRUE "E:\\Desktop\\Data\\Tile_+154_+009/" RangeDataList 2 { "" "Tile_+154_+009_L15_0.osgb" } PriorityList 2 { 0 1 0 1 } Children 1 { osg::Geode { UniqueID 2 Drawables 1 { osg::Geometry { UniqueID 3 DataVariance STATIC StateSet TRUE { osg::StateSet { UniqueID 4 DataVariance STATIC AttributeList 1 { osg::Material { UniqueID 5 Ambient TRUE Front 1 1 1 1 Back 1 1 1 1 Diffuse TRUE Front 1 1 1 1 Back 1 1 1 1 Specular TRUE Front 0 0 0 1 Back 0 0 0 1 Emission TRUE Front 0 0 0 1 Back 0 0 0 1 Shininess TRUE Front 0 Back 0 } Value OFF } TextureModeList 1 { Data 1 { GL_TEXTURE_2D ON } } TextureAttributeList 1 { Data 1 { osg::Texture2D { UniqueID 6 DataVariance STATIC WRAP_S CLAMP WRAP_T CLAMP WRAP_R CLAMP MIN_FILTER LINEAR_MIPMAP_LINEAR MAG_FILTER LINEAR UnRefImageDataAfterApply TRUE Swizzle RGBA Image TRUE { ClassName osg::Image UniqueID 7 FileName "Tile_+154_+009_0.jpg" WriteHint 2 2 DataVariance STATIC } } Value OFF } } } } PrimitiveSetList 1 { osg::DrawElementsUInt { UniqueID 8 BufferObject TRUE { osg::ElementBufferObject { UniqueID 9 Target 34963 } } Mode TRIANGLES vector 249 { 0 1 2 3 4 5 6 7 8 9 10 11 6 12 7 13 14 8 14 7 12 13 8 7 15 16 17 18 14 13 19 20 21 14 18 22 23 24 22 25 26 27 28 29 30 31 23 32 14 22 33 34 25 35 36 37 38 39 27 40 33 22 24 25 27 39 22 32 23 26 39 40 41 28 30 42 43 44 26 25 45 25 34 45 34 46 45 45 47 26 48 49 50 51 52 53 53 52 54 55 56 57 54 58 53 59 60 61 62 59 61 63 62 61 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 78 77 79 80 48 50 81 82 83 78 84 85 86 87 88 76 78 85 89 90 91 81 92 82 93 94 48 72 95 96 95 97 96 93 98 94 72 99 70 95 71 100 71 95 72 101 102 95 97 95 102 91 103 104 105 102 106 107 108 109 110 82 92 111 112 113 94 98 114 106 101 97 101 106 102 71 106 97 74 73 115 116 73 88 117 118 119 82 120 83 121 108 107 104 122 91 71 105 106 123 86 88 48 80 93 91 90 103 116 115 73 73 123 88 124 119 118 120 82 125 } } } VertexArray TRUE { osg::Vec3Array { UniqueID 10 BufferObject TRUE { osg::VertexBufferObject { UniqueID 11 } } Binding BIND_PER_VERTEX vector 126 { 11421.4 -2430.02 11.1509 11416 -2429.93 12.0398 11416.1 -2428.49 11.9536 11416.1 -2428.49 11.9536 11416.3 -2427.38 9.46918 11417 -2431.32 11.2052 11416 -2429.93 12.0398 11415.2 -2428.63 12.3225 11416.1 -2428.49 11.9536 11417 -2431.32 11.2052 11421.4 -2430.02 11.1509 11416.1 -2428.49 11.9536 11417 -2431.32 11.2052 11417.2 -2428.95 13.4176 11416.3 -2427.38 9.46918 11416.2 -2430.52 7.36804 11416.1 -2430.42 7.60243 11416 -2430.16 6.66749 11421.4 -2430.02 11.1509 11421.4 -2430.02 11.1509 11417.2 -2428.95 13.4176 11416 -2429.93 12.0398 11421.4 -2417.88 10.3103 11414 -2415.94 9.09115 11414.2 -2416 9.00664 11413.7 -2411.71 9.68296 11409.8 -2412.62 9.51062 11414.2 -2416 9.00664 11421.4 -2412.33 10.8725 11414.3 -2415.9 8.9807 11414.2 -2416 9.00664 11409.8 -2412.62 9.51062 11421.4 -2412.33 10.8725 11414.3 -2415.9 8.9807 11421.4 -2412.33 10.8725 11414.3 -2415.9 8.9807 11416.3 -2427.38 9.46918 11414.3 -2415.9 8.9807 11413.7 -2411.71 9.68296 11416.3 -2427.38 9.46918 11414 -2415.94 9.09115 11409.8 -2412.62 9.51062 11421.4 -2411.74 12.2718 11421.4 -2411.62 11.9188 11421.4 -2411.76 12.1873 11406.3 -2403.12 10.7203 11421.4 -2402.07 11.0026 11403 -2403.17 11.9259 11407.7 -2400.76 20.792 11408.6 -2406.5 20.017 11421.4 -2405.4 17.8293 11408.6 -2406.5 20.017 11406.3 -2403.12 10.7203 11421.4 -2405.4 17.8293 11421.4 -2402.07 11.0026 11421.4 -2402.14 14.4776 11421.4 -2402.04 14.7014 11421.4 -2402.31 14.7539 11421.4 -2399.19 11.9584 11407.7 -2400.76 20.792 11403.3 -2399.47 18.0124 11402.6 -2402.11 16.0169 11406.3 -2403.12 10.7203 11403.5 -2401.78 14.2324 11402.6 -2402.11 16.0169 11403 -2403.17 11.9259 11403.5 -2401.78 14.2324 11402.1 -2402.35 10.5813 11402 -2402.4 11.4244 11401.9 -2402.1 11.4328 11406 -2394.56 12.2159 11413.6 -2395.24 12.5957 11407 -2383.55 10.3011 11408.7 -2390.8 17.8375 11406 -2394.56 12.2159 11398.1 -2392.72 13.3419 11406.3 -2403.12 10.7203 11403.5 -2401.78 14.2324 11403.3 -2399.47 18.0124 11403 -2403.17 11.9259 11421.4 -2398.48 17.8706 11403 -2403.17 11.9259 11406 -2394.56 12.2159 11403.3 -2399.47 18.0124 11407.7 -2400.76 20.792 11413.6 -2395.24 12.5957 11421.4 -2399.19 11.9584 11421.4 -2402.07 11.0026 11417.6 -2396.89 10.3681 11421.4 -2402.07 11.0026 11421.4 -2393.37 11.0167 11417.6 -2396.89 10.3681 11406.3 -2403.12 10.7203 11408.7 -2390.8 17.8375 11407.4 -2395.19 18.3994 11419.2 -2393.09 11.0517 11421.4 -2382.84 9.16199 11421.4 -2393.37 11.0167 11398.1 -2392.72 13.3419 11398.1 -2392.72 13.3419 11419 -2393.87 10.3112 11419.8 -2394.49 10.5827 11419.5 -2394.39 10.7514 11419.8 -2394.49 10.5827 11419.2 -2393.09 11.0517 11417.6 -2396.89 10.3681 11419.5 -2394.49 10.9917 11413.6 -2395.24 12.5957 11419.5 -2394.39 10.7514 11419 -2393.87 10.3112 11413.6 -2395.24 12.5957 11419 -2393.87 10.3112 11419.5 -2394.39 10.7514 11417.6 -2396.89 10.3681 11403.3 -2399.47 18.0124 11409.7 -2395.95 16.3532 11413.6 -2395.24 12.5957 11413.6 -2395.24 12.5957 11407.7 -2400.76 20.792 11409.7 -2395.95 16.3532 11407.4 -2395.19 18.3994 11421.4 -2393.37 11.0167 11419 -2393.87 10.3112 11421.4 -2398.48 17.8706 11407.4 -2395.19 18.3994 11409.7 -2395.95 16.3532 } } } TexCoordArrayList 1 { osg::Vec2Array { UniqueID 12 BufferObject TRUE { osg::VertexBufferObject { UniqueID 11 } } Binding BIND_PER_VERTEX vector 126 { 0.692426 0.855664 0.703011 0.856104 0.702753 0.861724 0.570732 0.609083 0.568671 0.599278 0.576501 0.605998 0.328366 0.857498 0.331044 0.855646 0.329737 0.852837 0.441758 0.855283 0.450283 0.850095 0.44346 0.866617 0.3252 0.858301 0.327577 0.854413 0.330703 0.845386 0.195902 0.353782 0.195705 0.354209 0.195467 0.355194 0.319499 0.845511 0.208773 0.844122 0.201316 0.85591 0.198636 0.849995 0.332787 0.808157 0.346856 0.815357 0.346555 0.815111 0.0910442 0.827874 0.0927779 0.813587 0.0994225 0.828423 0.0672952 0.362282 0.0812559 0.348427 0.0814619 0.34803 0.357319 0.814601 0.33887 0.79253 0.346497 0.814557 0.0922966 0.857352 0.0992241 0.828762 0.0720457 0.599278 0.0940807 0.599094 0.101988 0.602514 0.121655 0.836511 0.0993046 0.828032 0.0899589 0.361319 0.32333 0.364582 0.323332 0.36502 0.32333 0.36449 0.0742107 0.802832 0.0722694 0.857707 0.074282 0.793042 0.0856387 0.56386 0.0873095 0.541454 0.112424 0.545566 0.32318 0.610118 0.324436 0.572843 0.342956 0.603723 0.347425 0.576504 0.448395 0.355193 0.448395 0.355587 0.448393 0.354527 0.351276 0.579699 0.205769 0.602609 0.196975 0.591479 0.197885 0.580644 0.205193 0.561936 0.199157 0.574931 0.819516 0.855274 0.818829 0.838799 0.821246 0.848312 0.566881 0.354655 0.56682 0.35447 0.566539 0.355615 0.2075 0.556892 0.222176 0.554122 0.209448 0.599878 0.222347 0.863516 0.228093 0.838681 0.243193 0.848836 0.211664 0.318576 0.216188 0.334426 0.215268 0.351605 0.217788 0.324245 0.112475 0.572588 0.321275 0.324245 0.331548 0.338728 0.323795 0.351605 0.207751 0.356878 0.193749 0.335213 0.198898 0.820795 0.199349 0.809863 0.205922 0.824395 0.210728 0.866942 0.195963 0.854278 0.205604 0.848005 0.327399 0.318576 0.0876976 0.602792 0.0850185 0.585631 0.23329 0.56245 0.237614 0.60247 0.237531 0.561327 0.0670734 0.59545 0.192073 0.5642 0.2328 0.559397 0.234342 0.556989 0.233846 0.557384 0.199434 0.850614 0.197591 0.84838 0.230092 0.547641 0.233775 0.556984 0.333479 0.856571 0.321888 0.85038 0.322974 0.849073 0.345314 0.335213 0.824279 0.612617 0.823928 0.615871 0.817834 0.61363 0.0771236 0.568969 0.221239 0.844325 0.213566 0.835886 0.453171 0.810441 0.459564 0.852859 0.451968 0.83147 0.333637 0.358427 0.318287 0.852249 0.199158 0.846992 0.198804 0.837991 0.449074 0.842425 0.337638 0.348894 } } } } } } } }
3.OSG documents
http://dei.isep.ipp.pt/~matos/cadeiras/cgra/OpenSceneGraphReferenceDocs/index.html
2, Tilt photographic data
1. Data organization structure
1.1 as shown in the figure, the Data organization structure is as follows: the Data directory is the Data entry directory, which contains many subdirectories. As shown below, each subdirectory is a root block, and each root block is a tree structure and a LOD hierarchical structure.
1.2 there are many. Osgb files under each root block. The osgb file with the same name as the directory name under the subdirectory is the root file, as follows:
2.OSGB format analysis
2.1 OSGB binary data contains many fields, including non key fields of OpenSceneGraph framework, which are mainly used in OpenSceneGraph framework, as well as key fields, mainly vertex coordinates, normal coordinates, texture data and LOD information of a 3D model. OSGB data contains many different blocks (composed of multiple fields). These blocks have nested relationships in OSGB. OSGB is not like general non nested data, so the OSGB data format is more complex.
The following data reading process is organized according to the reading order structure, which can be combined to read the entire OSGB format data.
2.2 read OSGB file header information
Is the header information of OSGB. The low and high bits are 4 bytes respectively, and each is a 16Bit MD5 code.
unsigned int headerLow = 0, headerHigh = 0; fin.read((char*)&headerLow, INT_SIZE); fin.read((char*)&headerHigh, INT_SIZE);
2.3 to read the following blocks, a stack needs to be used to assist in reading each block.
- Read file type:
READ_UNKNOWN=0,READ_SCENE=1,READ_IMAGE=2,READ_OBJECT=3, which represents the type supported by osgb. It can be considered that the osgb format of tilt photography is always 1; - Read file version number
- Read properties:
Determine whether to use in the file_ Is useSchemaData and supported_ SupportBinaryBrackets: all zeros indicate that they are not supported; - Set some OSGB parameters according to the attribute information, and then read the information according to the parameter settings;
//Stack, press "start" when reading _fields.push_back("Start"); //Read file type _in->read((char*)&i, osgDB::INT_SIZE); //unsigned int //Read file version number _in->read((char*)&i, osgDB::INT_SIZE); //unsignde int //Read attribute value _in->read((char*)&attributes, osgDB::INT_SIZE); //unsignde int //Set parameters according to attribute values if (attributes & 0x4) _SupportBinaryBrackets = true; if (attributes & 0x2) _useSchemaData = true; //Read information according to attribute value if (attributes & 0x1) { _in->read((char*)&number, osgDB::INT_SIZE); //unsignde int //According to the number value, the following value is read in a loop for(unsigned int i = 0;i<number;++i) { //Read string _in->read((char*)&size, osgDB::INT_SIZE); //int, read string length _in->read((char*)s.c_str(), size); //char array //Read int _in->read((char*)&i, osgDB::INT_SIZE); //int, read string length map[s] = i; //Use collections to store their information, mainly some version information } } //Field out of stack _fields.pop_back();
2.4 read the name of the compressor
//Read the compressor name, generally "0", which indicates the compression format and the compressor name. zib compression can also be used _in->read((char*)&size, osgDB::INT_SIZE); //int, read string length _in->read((char*)compressorName .c_str(), size); //char array //Read the compressor name accordingly. In this article, I mainly discuss the case of compressor name = = 0. For zlib, I will briefly introduce it if (compressorName != "0") { //data to be read std::string data; //Push _fields.push_back("Decompression"); BaseCompressor* compressor = Registry::instance()->getObjectWrapperManager()->findCompressor(compressorName); if (!compressor) { throwException("InputStream: Failed to decompress stream, No such compressor."); return; } //The related reading is mainly in the decompress function if (!compressor->decompress(*(_in->getStream()), data)) throwException("InputStream: Failed to decompress stream."); if (getException()) return; _dataDecompress = new std::stringstream(data); _in->setStream(_dataDecompress); //Out of stack _fields.pop_back(); }
2.5 basis_ The useSchemaData parameter reads the corresponding information
if(_useSchemaData) { //Field stack _fields.push_back("SchemaData"); //Read string _in->read((char*)&size, osgDB::INT_SIZE); //int, read string length _in->read((char*)s.c_str(), size); //char array //S string information analysis, and construct an std::istringstream object through s //Out of stack _fields.pop_back(); }
2.6 there is a nested relationship later. You need to read the information of the corresponding field according to the value of the currently read string. Each field contains its own reading method. Built to organize each field element into a function.
//Read string _in->read((char*)&size, osgDB::INT_SIZE); //int _in->read((char*)s.c_str(), size); //char array //BEGIN_ The bracket operation is used to move the reading position according to the position and size; if(_supportBinaryBrackets) { //Stack current position _beginPositions.push_back(_in->tellg()); if(_in && Version > 148) { _in->read((char*)&size, osgDB::INT64_SIZE); //Unsigned long, 8 bytes //size stack _blockSizes.push_back(size); }else{ _in->read((char*)&size, osgDB::INT_SIZE); //int //size stack _blockSizes.push_back(size); } } //PROPERTY operation _in->read((char*)&value, osgDB::INT_SIZE); //int //Read ID _in->read((char*)&id, osgDB::INT_SIZE); //unsigned int /*explain: std::map< unsigned int, osg::ref_ptr<osg::Object> > IdentifierMap; IdentifierMap Used to store the object (block) corresponding to ID and ID */ //Determine whether the block corresponding to the ID exists IdentifierMap::iterator it = _identifierMap.find(id); if(it != _identifierMap.end()) { //Return block return it->second; } //Read the information of the corresponding field according to the string className and id osg::ref_ptr<osg::Object> obj = readObjectFields(className, id, existingObj);
2.7 select the corresponding field to read according to the value of string className.
- Read osg::Object field
//Read string _in->read((char*)&size, osgDB::INT_SIZE); //int _in->read((char*)s.c_str(), size); _in->read((char*)&i, osgDB::INT_SIZE); //int _in->read(&c, osgDB::CHAR_SIZE); //bool
- osg::Node field
//Bool, usually read a char and set the bool value according to the char _in->read(&c, osgDB::CHAR_SIZE); //bool _in->read(&c, osgDB::CHAR_SIZE); //bool _in->read(&c, osgDB::CHAR_SIZE); //bool _in->read(&c, osgDB::CHAR_SIZE); //bool _in->read(&c, osgDB::CHAR_SIZE); //bool _in->read(&c, osgDB::CHAR_SIZE); //bool _in->read((char*)&i, osgDB::INT_SIZE); //unsignde int _in->read(&c, osgDB::CHAR_SIZE); //bool //Note: according to the previous bool value, if it is true, you need to read the relevant information immediately
- osg::LOD field
_in->read((char*)&i, osgDB::INT_SIZE); //int //If bool value is false, return true _in->read(&c, osgDB::CHAR_SIZE); //bool //Read center point and radius _in->read((char*)&d, osgDB::DOUBLE_SIZE); //double _in->read((char*)&d, osgDB::DOUBLE_SIZE); //double _in->read((char*)&d, osgDB::DOUBLE_SIZE); //double _in->read((char*)&d, osgDB::DOUBLE_SIZE); //double _in->read((char*)&i, osgDB::INT_SIZE); //int //RangList information reading _in->read(&c, osgDB::CHAR_SIZE); //bool,false returns true _in->read((char*)&size, osgDB::INT_SIZE); //unsignde int //BEGIN_BRACKET operation, omitted here, see above ... //Cyclic reading according to size for(int i = 0;i<size;++i) { _in->read((char*)&min, osgDB::FLOAT_SIZE); //float _in->read((char*)&max, osgDB::FLOAT_SIZE); //float //osg::LOD& node node.setRange(i,min,max); } //END_ Brake operation if (_supportBinaryBrackets) { //If the stack is not empty, get out of the stack _beginPositions.pop_back(); _blockSizes.pop_back(); }
- osg::PagedLOD subfield
_in->read(&c, osgDB::CHAR_SIZE); //bool,false return true _in->read(&havePath, osgDB::CHAR_SIZE); //bool //If havePath is true, you need to read string _in->read((char*)&size, osgDB::INT_SIZE); //int _in->read((char*)s.c_str(), size); //string
-
osg::PagedLOD combined field
Reading osg::PagedLOD requires reading four fields.- osg::Object
- osg::Node
- osg::LOD
- osg::PagedLOD subfield
-
osg::Geode combination field
- osg::Object
- osg::Node
- osg::Geode subfield
-
osg::Geometry combined field
- osg::Object
- osg::Drawable
- osg::Geometry
-
osg::stateSet
- osg::Object
- osg::stateSet
-
osg::Material
- osg::Object
- osg::stateAttribute
- osg::material
-
osg::Texture2D
- osg::Object
- osg::stateAttribute
- osg::Texture
- osg::Texture2D
-
osg::Object
- osg::Object
-
osg::Group
- osg::Object
- osg::Node
- osg::Group
-
osg::DrawElementsUint
- osg::Object
- osg::PrimitiveSet
- osg::DrawElementsUint
-
osg::Vec3Array
- osg::Object
- osg::Array
- osg::Vec3Array
-
osg::Vec2Array
- osg::Object
- osg::Array
- osg::Vec2Array
-
osg::Node
- osg::Object
- osg::Node
-
osg::MatrixTransform
- osg::Object
- osg::Node
- osg::Group
- osg::Transform
- osg::MatrixTransform
-
osg::TexMat
- osg::Object
- osg::StateAttribute
- osg::TexMat
-
osg::DefaultUserData combination field
- osg::Object
- osg::UserDataContainer
- osg::DefaultUserDataContainer
-
OSG:: drawelementsusshort combined field
- osg::Object
- osg::PrimitiveSet
- osg::DrawElementsUshort
2.8 complete source code interpretation
You can analyze the composition of OSGB format through the key part of the source code. The comment part is an excerpt of the source code, which is used to assist in the analysis of the current source code.
- Binary OSGB write class definition:
class BinaryOutputIterator : public osgDB::OutputIterator { public: BinaryOutputIterator(std::ostream* ostream) { _out = ostream; } virtual ~BinaryOutputIterator() {} virtual bool isBinary() const { return true; } virtual void writeBool(bool b) { char c = b ? 1 : 0; _out->write(&c, osgDB::CHAR_SIZE); } virtual void writeChar(char c) { _out->write(&c, osgDB::CHAR_SIZE); } virtual void writeUChar(unsigned char c) { _out->write((char*)&c, osgDB::CHAR_SIZE); } virtual void writeShort(short s) { _out->write((char*)&s, osgDB::SHORT_SIZE); } virtual void writeUShort(unsigned short s) { _out->write((char*)&s, osgDB::SHORT_SIZE); } virtual void writeInt(int i) { _out->write((char*)&i, osgDB::INT_SIZE); } virtual void writeUInt(unsigned int i) { _out->write((char*)&i, osgDB::INT_SIZE); } virtual void writeLong(long l) { // On 64-bit systems a long may not be the same size as the file value int32_t value = (int32_t)l; _out->write((char*)&value, osgDB::LONG_SIZE); } virtual void writeULong(unsigned long l) { // On 64-bit systems a long may not be the same size as the file value uint32_t value = (int32_t)l; _out->write((char*)&value, osgDB::LONG_SIZE); } virtual void writeInt64(int64_t ll) { _out->write((char*)&ll, osgDB::INT64_SIZE); } virtual void writeUInt64(uint64_t ull) { _out->write((char*)&ull, osgDB::INT64_SIZE); } virtual void writeInt(long long ll) { _out->write((char*)&ll, osgDB::INT64_SIZE); } virtual void writeUInt(unsigned long long ull) { _out->write((char*)&ull, osgDB::INT64_SIZE); } virtual void writeFloat(float f) { _out->write((char*)&f, osgDB::FLOAT_SIZE); } virtual void writeDouble(double d) { _out->write((char*)&d, osgDB::DOUBLE_SIZE); } virtual void writeString(const std::string& s) { int size = s.size(); _out->write((char*)&size, osgDB::INT_SIZE); _out->write(s.c_str(), s.size()); } virtual void writeStream(std::ostream& (* /*fn*/)(std::ostream&)) {} virtual void writeBase(std::ios_base& (* /*fn*/)(std::ios_base&)) {} virtual void writeGLenum(const osgDB::ObjectGLenum& value) { GLenum e = value.get(); _out->write((char*)&e, osgDB::GLENUM_SIZE); } virtual void writeProperty(const osgDB::ObjectProperty& prop) { if (prop._mapProperty) _out->write((char*)&(prop._value), osgDB::INT_SIZE); } virtual void writeMark(const osgDB::ObjectMark& mark) { if (_supportBinaryBrackets) { if (getOutputStream() && getOutputStream()->getFileVersion() > 148) { if (mark._name == "{") { uint64_t size = 0; _beginPositions.push_back(_out->tellp()); _out->write((char*)&size, osgDB::INT64_SIZE); } else if (mark._name == "}" && _beginPositions.size() > 0) { std::streampos pos = _out->tellp(), beginPos = _beginPositions.back(); _beginPositions.pop_back(); _out->seekp(beginPos); std::streampos size64 = pos - beginPos; uint64_t size = (uint64_t)size64; _out->write((char*)&size, osgDB::INT64_SIZE); _out->seekp(pos); } } else { if (mark._name == "{") { int size = 0; _beginPositions.push_back(_out->tellp()); _out->write((char*)&size, osgDB::INT_SIZE); } else if (mark._name == "}" && _beginPositions.size() > 0) { std::streampos pos = _out->tellp(), beginPos = _beginPositions.back(); _beginPositions.pop_back(); _out->seekp(beginPos); std::streampos size64 = pos - beginPos; int size = (int)size64; _out->write((char*)&size, osgDB::INT_SIZE); _out->seekp(pos); } } } } virtual void writeCharArray(const char* s, unsigned int size) { if (size > 0) _out->write(s, size); } virtual void writeWrappedString(const std::string& str) { writeString(str); } protected: std::vector<std::streampos> _beginPositions; };
- Binary OSGB read class definition
inline void swapBytes( char* in, unsigned int size ) { char* start = in; char* end = start+size-1; while (start<end) { std::swap(*start++,*end--); } }
class BinaryInputIterator : public osgDB::InputIterator { public: BinaryInputIterator(std::istream* istream, int byteSwap) { _in = istream; setByteSwap(byteSwap); } virtual ~BinaryInputIterator() {} virtual bool isBinary() const { return true; } virtual void readBool(bool& b) { char c = 0; _in->read(&c, osgDB::CHAR_SIZE); b = (c != 0); } virtual void readChar(char& c) { _in->read(&c, osgDB::CHAR_SIZE); } virtual void readSChar(signed char& c) { _in->read((char*)&c, osgDB::CHAR_SIZE); } virtual void readUChar(unsigned char& c) { _in->read((char*)&c, osgDB::CHAR_SIZE); } virtual void readShort(short& s) { _in->read((char*)&s, osgDB::SHORT_SIZE); if (_byteSwap) osg::swapBytes((char*)&s, osgDB::SHORT_SIZE); } virtual void readUShort(unsigned short& s) { _in->read((char*)&s, osgDB::SHORT_SIZE); if (_byteSwap) osg::swapBytes((char*)&s, osgDB::SHORT_SIZE); } virtual void readInt(int& i) { _in->read((char*)&i, osgDB::INT_SIZE); if (_byteSwap) osg::swapBytes((char*)&i, osgDB::INT_SIZE); } virtual void readUInt(unsigned int& i) { _in->read((char*)&i, osgDB::INT_SIZE); if (_byteSwap) osg::swapBytes((char*)&i, osgDB::INT_SIZE); } virtual void readLong(long& l) { // On 64-bit systems a long may not be the same size as the file value int32_t value; _in->read((char*)&value, osgDB::LONG_SIZE); if (_byteSwap) osg::swapBytes((char*)&value, osgDB::LONG_SIZE); l = (long)value; } virtual void readULong(unsigned long& l) { uint32_t value; _in->read((char*)&value, osgDB::LONG_SIZE); if (_byteSwap) osg::swapBytes((char*)&value, osgDB::LONG_SIZE); l = (unsigned long)value; } virtual void readFloat(float& f) { _in->read((char*)&f, osgDB::FLOAT_SIZE); if (_byteSwap) osg::swapBytes((char*)&f, osgDB::FLOAT_SIZE); } virtual void readDouble(double& d) { _in->read((char*)&d, osgDB::DOUBLE_SIZE); if (_byteSwap) osg::swapBytes((char*)&d, osgDB::DOUBLE_SIZE); } virtual void readString(std::string& s) { int size = 0; readInt(size); if (size > 0) { s.resize(size); _in->read((char*)s.c_str(), size); } else if (size < 0) { throwException("InputStream::readString() error, negative string size read."); } } virtual void readStream(std::istream& (* /*fn*/)(std::istream&)) {} virtual void readBase(std::ios_base& (* /*fn*/)(std::ios_base&)) {} virtual void readGLenum(osgDB::ObjectGLenum& value) { GLenum e = 0; _in->read((char*)&e, osgDB::GLENUM_SIZE); if (_byteSwap) osg::swapBytes((char*)&e, osgDB::GLENUM_SIZE); value.set(e); } virtual void readProperty(osgDB::ObjectProperty& prop) { int value = 0; if (prop._mapProperty) { _in->read((char*)&value, osgDB::INT_SIZE); if (_byteSwap) osg::swapBytes((char*)&value, osgDB::INT_SIZE); } prop.set(value); } virtual void readMark(osgDB::ObjectMark& mark) { if (_supportBinaryBrackets) { if (mark._name == "{") { _beginPositions.push_back(_in->tellg()); // since version 149 (osg version > 3.5.6) size is expressed // on 8 bytes rather than 4 bytes, // to accommodate any block size. if (getInputStream() && getInputStream()->getFileVersion() > 148) { uint64_t size = 0; _in->read((char*)&size, osgDB::INT64_SIZE); if (_byteSwap) osg::swapBytes((char*)&size, osgDB::INT64_SIZE); _blockSizes.push_back(size); } else { int size = 0; _in->read((char*)&size, osgDB::INT_SIZE); if (_byteSwap) osg::swapBytes((char*)&size, osgDB::INT_SIZE); _blockSizes.push_back(size); } } else if (mark._name == "}" && _beginPositions.size() > 0) { _beginPositions.pop_back(); _blockSizes.pop_back(); } } } virtual void readCharArray(char* s, unsigned int size) { if (size > 0) _in->read(s, size); } virtual void readWrappedString(std::string& str) { readString(str); } virtual void advanceToCurrentEndBracket() { if (_supportBinaryBrackets && _beginPositions.size() > 0) { std::streampos position(_beginPositions.back()); position += _blockSizes.back(); _in->seekg(position); _beginPositions.pop_back(); _blockSizes.pop_back(); } } protected: std::vector<std::streampos> _beginPositions; std::vector<std::streampos> _blockSizes; };
- Read header file: load the corresponding read plug-in through the tilt photography suffix
InputIterator* readInputIterator(std::istream& fin, const Options* options) { bool extensionIsAscii = false, extensionIsXML = false; if (options) { const std::string& optionString = options->getPluginStringData("fileType"); if (optionString == "Ascii") extensionIsAscii = true; else if (optionString == "XML") extensionIsXML = true; } if (!extensionIsAscii && !extensionIsXML) { unsigned int headerLow = 0, headerHigh = 0; fin.read((char*)&headerLow, INT_SIZE); fin.read((char*)&headerHigh, INT_SIZE); // OSG Header (MD5, 16Bit), the excerpt part, defines the MD5 code of header information //#define OSG_HEADER_LOW 0x6C910EA1 //#define OSG_HEADER_HIGH 0x1AFB4545 if (headerLow == OSG_HEADER_LOW && headerHigh == OSG_HEADER_HIGH) { OSG_INFO << "Reading OpenSceneGraph binary file with the same endian as this computer." << std::endl; return new BinaryInputIterator(&fin, 0); // endian the same so no byte swap required } //#define OSG_ Reverse (value) (((value & 0x000000ff) < < 24) | ((value & 0x0000ff00) < < 8) | ((value & 0x00ff0000) > > 8) | ((value & 0xff000000) > > 24)), excerpt, which is used to assist in analyzing the source code else if (headerLow == OSG_REVERSE(OSG_HEADER_LOW) && headerHigh == OSG_REVERSE(OSG_HEADER_HIGH)) { OSG_INFO << "Reading OpenSceneGraph binary file with the different endian to this computer, doing byte swap." << std::endl; return new BinaryInputIterator(&fin, 1); // endian different so byte swap required } fin.seekg(0, std::ios::beg); } if (!extensionIsXML) { std::string header; fin >> header; if (header == "#Ascii") { return new AsciiInputIterator(&fin); } fin.seekg(0, std::ios::beg); } if (1) { std::string header; std::getline(fin, header); if (!header.compare(0, 5, "<?xml")) { return new XmlInputIterator(&fin); } fin.seekg(0, std::ios::beg); } return NULL; }
- Read attribute information
InputStream::ReadType InputStream::start(InputIterator* inIterator) { _fields.clear(); _fields.push_back("Start"); ReadType type = READ_UNKNOWN; _in = inIterator; if (!_in) throwException("InputStream: Null stream specified."); if (getException()) return type; _in->setInputStream(this); // Check OSG header information unsigned int version = 0; if (isBinary()) { unsigned int typeValue; *this >> typeValue >> version; type = static_cast<ReadType>(typeValue); unsigned int attributes; *this >> attributes; if (attributes & 0x4) inIterator->setSupportBinaryBrackets(true); if (attributes & 0x2) _useSchemaData = true; // Record custom domains if (attributes & 0x1) { unsigned int numDomains; *this >> numDomains; for (unsigned int i = 0; i < numDomains; ++i) { std::string domainName; *this >> domainName; int domainVersion; *this >> domainVersion; _domainVersionMap[domainName] = domainVersion; } } } if (!isBinary()) { std::string typeString; *this >> typeString; if (typeString == "Scene") type = READ_SCENE; else if (typeString == "Image") type = READ_IMAGE; else if (typeString == "Object") type = READ_OBJECT; std::string osgName, osgVersion; *this >> PROPERTY("#Version") >> version; *this >> PROPERTY("#Generator") >> osgName >> osgVersion; while (matchString("#CustomDomain")) { std::string domainName; *this >> domainName; int domainVersion; *this >> domainVersion; _domainVersionMap[domainName] = domainVersion; } } // Record file version for back-compatibility checking of wrappers _fileVersion = version; _fields.pop_back(); return type; }
- Read compressor
Generally, the compressor name is 0;
void InputStream::decompress() { if (!isBinary()) return; _fields.clear(); std::string compressorName; *this >> compressorName; if (compressorName != "0") { //When the compressor is zlib or other non-0 compressor, the decompress function of the corresponding compressor will be called; std::string data; _fields.push_back("Decompression"); //Find the object wrapper through the packaging manager and read the information of the object; BaseCompressor* compressor = Registry::instance()->getObjectWrapperManager()->findCompressor(compressorName); if (!compressor) { throwException("InputStream: Failed to decompress stream, No such compressor."); return; } if (!compressor->decompress(*(_in->getStream()), data)) throwException("InputStream: Failed to decompress stream."); if (getException()) return; _dataDecompress = new std::stringstream(data); _in->setStream(_dataDecompress); _fields.pop_back(); } if (_useSchemaData) { _fields.push_back("SchemaData"); std::string schemaSource; *this >> schemaSource; std::istringstream iss(schemaSource); readSchema(iss); _fields.pop_back(); } }
The decompress function of null and zlib compressor is defined as follows:
class NullCompressor : public BaseCompressor { public: NullCompressor() {} virtual bool compress( std::ostream& fout, const std::string& src ) { int size = src.size(); fout.write( (char*)&size, INT_SIZE ); fout.write( src.c_str(), src.size() ); return true; } virtual bool decompress( std::istream& fin, std::string& target ) { int size = 0; fin.read( (char*)&size, INT_SIZE ); if ( size ) { target.resize( size ); fin.read( (char*)target.c_str(), size ); } return true; } }; REGISTER_COMPRESSOR( "null", NullCompressor ) #ifdef USE_ZLIB #include <zlib.h> #define CHUNK 32768 // ZLib compressor class ZLibCompressor : public BaseCompressor { public: ZLibCompressor() {} virtual bool compress( std::ostream& fout, const std::string& src ) { int ret, flush = Z_FINISH; unsigned have; z_stream strm; unsigned char out[CHUNK]; int level = 6; int stategy = Z_DEFAULT_STRATEGY; /* allocate deflate state */ strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; ret = deflateInit2( &strm, level, Z_DEFLATED, 15+16, // +16 to use gzip encoding 8, // default stategy ); if ( ret != Z_OK ) return false; strm.avail_in = src.size(); strm.next_in = (Bytef*)( &(*src.begin()) ); /* run deflate() on input until output buffer not full, finish compression if all of source has been read in */ do { strm.avail_out = CHUNK; strm.next_out = out; ret = deflate(&strm, flush); /* no bad return value */ if ( ret == Z_STREAM_ERROR ) { OSG_NOTICE << "Z_STREAM_ERROR" << std::endl; return false; } have = CHUNK - strm.avail_out; if ( have>0 ) fout.write( (const char*)out, have ); if ( fout.fail() ) { (void)deflateEnd( &strm ); return false; } } while ( strm.avail_out==0 ); /* clean up and return */ (void)deflateEnd( &strm ); return true; } virtual bool decompress( std::istream& fin, std::string& target ) { int ret; unsigned have; z_stream strm; unsigned char in[CHUNK]; unsigned char out[CHUNK]; /* allocate inflate state */ strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.avail_in = 0; strm.next_in = Z_NULL; ret = inflateInit2( &strm,15 + 32 ); // autodected zlib or gzip header if ( ret!=Z_OK ) { OSG_INFO << "failed to init" << std::endl; return ret!=0; } /* decompress until deflate stream ends or end of file */ do { fin.read( (char *)in, CHUNK ); strm.avail_in = fin.gcount(); if (strm.avail_in==0 ) break; /* run inflate() on input until output buffer not full */ strm.next_in = in; do { strm.avail_out = CHUNK; strm.next_out = out; ret = inflate( &strm, Z_NO_FLUSH ); switch (ret) { case Z_NEED_DICT: case Z_DATA_ERROR: case Z_MEM_ERROR: (void)inflateEnd( &strm ); return false; } have = CHUNK - strm.avail_out; target.append( (char*)out, have ); } while ( strm.avail_out==0 ); /* done when inflate() says it's done */ } while ( ret!=Z_STREAM_END ); /* clean up and return */ (void)inflateEnd( &strm ); return ret==Z_STREAM_END ? true : false; } }; REGISTER_COMPRESSOR( "zlib", ZLibCompressor ) #endif
- Read each object
Read the children of each composite object according to its name.
osg::ref_ptr<osg::Object> InputStream::readObject(osg::Object* existingObj) { std::string className; unsigned int id = 0; *this >> className; if (className == "NULL") { return 0; } *this >> BEGIN_BRACKET >> PROPERTY("UniqueID") >> id; if (getException()) return 0; //Each object corresponds to an id and name. According to the id, you can judge whether the id already exists; IdentifierMap::iterator itr = _identifierMap.find(id); if (itr != _identifierMap.end()) { advanceToCurrentEndBracket(); return itr->second; } std::cout << "className = " << className << std::endl; osg::ref_ptr<osg::Object> obj = readObjectFields(className, id, existingObj); advanceToCurrentEndBracket(); return obj; }
- BEGIN_ Break and end_ Brake operation
BEGIN_BRACKET ,END_ Brake is an ObjectMark class object. Different objects set different initial values.- Class definition
class ObjectMark { public: ObjectMark() : _indentDelta(0) {} ObjectMark(const ObjectMark& copy) : _name(copy._name), _indentDelta(copy._indentDelta) {} void set(const char* name, int delta = 0) { _name = name; _indentDelta = delta; } std::string _name; int _indentDelta; };
- BEGIN_ Brake operation
BEGIN_ Brake is an ObjectMark object, which sets the initial value of the object: "{"
virtual void readMark(osgDB::ObjectMark& mark) { if (_supportBinaryBrackets) { if (mark._name == "{") { _beginPositions.push_back(_in->tellg()); // since version 149 (osg version > 3.5.6) size is expressed // on 8 bytes rather than 4 bytes, // to accommodate any block size. if (getInputStream() && getInputStream()->getFileVersion() > 148) { uint64_t size = 0; _in->read((char*)&size, osgDB::INT64_SIZE); if (_byteSwap) osg::swapBytes((char*)&size, osgDB::INT64_SIZE); _blockSizes.push_back(size); } else { int size = 0; _in->read((char*)&size, osgDB::INT_SIZE); if (_byteSwap) osg::swapBytes((char*)&size, osgDB::INT_SIZE); _blockSizes.push_back(size); } } else if (mark._name == "}" && _beginPositions.size() > 0) { _beginPositions.pop_back(); _blockSizes.pop_back(); } } }
- PROPERTY operation
- Class definition
class ObjectProperty { public: ObjectProperty() : _value(0), _mapProperty(false) {} ObjectProperty(const char* name, int value = 0, bool useMap = false) : _name(name), _value(value), _mapProperty(useMap) {} ObjectProperty(const ObjectProperty& copy) : _name(copy._name), _value(copy._value), _mapProperty(copy._mapProperty) {} ObjectProperty& operator()(const char* name) { _name = name; return *this; } void set(int v) { _value = v; } int get() const { return _value; } std::string _name; int _value; bool _mapProperty; };
- read operation
virtual void readProperty(osgDB::ObjectProperty& prop) { int value = 0; if (prop._mapProperty) { _in->read((char*)&value, osgDB::INT_SIZE); if (_byteSwap) osg::swapBytes((char*)&value, osgDB::INT_SIZE); } prop.set(value); }
- Subfield read
In the code, getobjectwrappermanager () - > findwrapper (classname) finds the wrapper of the object, encapsulates its sub fields in each wrapper, obtains the sub fields of the wrapper through getAssociates(), and then reads them one by one.
osg::ref_ptr<osg::Object> InputStream::readObjectFields(const std::string& className, unsigned int id, osg::Object* existingObj) { ObjectWrapper* wrapper = Registry::instance()->getObjectWrapperManager()->findWrapper(className); if (!wrapper) { OSG_WARN << "InputStream::readObject(): Unsupported wrapper class " << className << std::endl; return NULL; } int inputVersion = getFileVersion(wrapper->getDomain()); osg::ref_ptr<osg::Object> obj = existingObj ? existingObj : wrapper->createInstance(); _identifierMap[id] = obj; if (obj.valid()) { const ObjectWrapper::RevisionAssociateList& associates = wrapper->getAssociates(); for (ObjectWrapper::RevisionAssociateList::const_iterator itr = associates.begin(); itr != associates.end(); ++itr) { if (itr->_firstVersion <= inputVersion && inputVersion <= itr->_lastVersion) { ObjectWrapper* assocWrapper = Registry::instance()->getObjectWrapperManager()->findWrapper(itr->_name); if (!assocWrapper) { OSG_WARN << "InputStream::readObject(): Unsupported associated class " << itr->_name << std::endl; continue; } _fields.push_back(assocWrapper->getName()); std::cout << "_fileds add : " << assocWrapper->getName() << std::endl; assocWrapper->read(*this, *obj); if (getException()) return NULL; _fields.pop_back(); } else { /* OSG_INFO << "InputStream::readObject():"<<className<<" Ignoring associated class due to version mismatch" << itr->_name<<"["<<itr->_firstVersion <<","<<itr->_lastVersion <<"]for version "<<inputVersion<< std::endl;*/ } } } return obj; }
The function to find the wrapper is as follows:
ObjectWrapper* ObjectWrapperManager::findWrapper( const std::string& name ) { OpenThreads::ScopedLock<OpenThreads::ReentrantMutex> lock(_wrapperMutex); WrapperMap::iterator itr = _wrappers.find( name ); if ( itr!=_wrappers.end() ) return itr->second.get(); // Load external libraries std::string::size_type posDoubleColon = name.rfind("::"); if ( posDoubleColon!=std::string::npos ) { std::string libName = std::string( name, 0, posDoubleColon ); ObjectWrapper* found=0; std::string nodeKitLib = osgDB::Registry::instance()->createLibraryNameForNodeKit(libName); if ( osgDB::Registry::instance()->loadLibrary(nodeKitLib)==osgDB::Registry::LOADED ) found= findWrapper(name); std::string pluginLib = osgDB::Registry::instance()->createLibraryNameForExtension(std::string("serializers_")+libName); if ( osgDB::Registry::instance()->loadLibrary(pluginLib)==osgDB::Registry::LOADED ) found= findWrapper(name); pluginLib = osgDB::Registry::instance()->createLibraryNameForExtension(libName); if ( osgDB::Registry::instance()->loadLibrary(pluginLib)==osgDB::Registry::LOADED ) found= findWrapper(name); if (found) found->setupAssociatesRevisionsInheritanceIfRequired(); return found; } return NULL; }
The wrapper subfield reading function is as follows: read the corresponding information through the corresponding serialization function, which is responsible for reading the information,
bool ObjectWrapper::read( InputStream& is, osg::Object& obj ) { bool readOK = true; int inputVersion = is.getFileVersion(_domain); for ( SerializerList::iterator itr=_serializers.begin(); itr!=_serializers.end(); ++itr ) { BaseSerializer* serializer = itr->get(); if ( serializer->_firstVersion <= inputVersion && inputVersion <= serializer->_lastVersion && serializer->supportsReadWrite()) { if ( !serializer->read(is, obj) ) { OSG_WARN << "ObjectWrapper::read(): Error reading property "<< _name << "::" << (*itr)->getName() << std::endl; readOK = false; } } else { // OSG_NOTICE<<"Ignoring serializer due to version mismatch"<<std::endl; } } for ( FinishedObjectReadCallbackList::iterator itr=_finishedObjectReadCallbacks.begin();itr!=_finishedObjectReadCallbacks.end();++itr ) { (*itr)->objectRead(is, obj); } return readOK; }
2.8 serialization mechanism
Each object corresponds to a serialization mechanism. The serialization mechanism is described below through PagedLOD.
#include <osg/PagedLOD> #include <osgDB/ObjectWrapper> #include <osgDB/InputStream> #include <osgDB/OutputStream> #include <osgDB/Options> // _databasePath static bool checkDatabasePath( const osg::PagedLOD& node ) { return true; } static bool readDatabasePath( osgDB::InputStream& is, osg::PagedLOD& node ) { bool hasPath; is >> hasPath; if ( !hasPath ) { if ( is.getOptions() && !is.getOptions()->getDatabasePathList().empty() ) { const std::string& optionPath = is.getOptions()->getDatabasePathList().front(); if ( !optionPath.empty() ) node.setDatabasePath( optionPath ); } } else { std::string path; is.readWrappedString( path ); node.setDatabasePath( path ); } return true; } static bool writeDatabasePath( osgDB::OutputStream& os, const osg::PagedLOD& node ) { os << (!node.getDatabasePath().empty()); if ( !node.getDatabasePath().empty() ) os.writeWrappedString( node.getDatabasePath() ); os << std::endl; return true; } // _perRangeDataList static bool checkRangeDataList( const osg::PagedLOD& node ) { return node.getNumFileNames()>0; } static bool readRangeDataList( osgDB::InputStream& is, osg::PagedLOD& node ) { unsigned int size = 0; is >> size >> is.BEGIN_BRACKET; for ( unsigned int i=0; i<size; ++i ) { std::string name; is.readWrappedString( name ); node.setFileName( i, name ); } is >> is.END_BRACKET; size = 0; is >> is.PROPERTY("PriorityList") >> size >> is.BEGIN_BRACKET; for ( unsigned int i=0; i<size; ++i ) { float offset, scale; is >> offset >> scale; node.setPriorityOffset( i, offset ); node.setPriorityScale( i, scale ); } is >> is.END_BRACKET; return true; } static bool writeRangeDataList( osgDB::OutputStream& os, const osg::PagedLOD& node ) { unsigned int size = node.getNumFileNames(); os << size << os.BEGIN_BRACKET << std::endl; for ( unsigned int i=0; i<size; ++i ) { os.writeWrappedString( node.getFileName(i) ); os << std::endl; } os << os.END_BRACKET << std::endl; size = node.getNumPriorityOffsets(); os << os.PROPERTY("PriorityList") << size << os.BEGIN_BRACKET << std::endl; for ( unsigned int i=0; i<size; ++i ) { os << node.getPriorityOffset(i) << node.getPriorityScale(i) << std::endl; } os << os.END_BRACKET << std::endl; return true; } // _children static bool checkChildren( const osg::PagedLOD& node ) { return node.getNumChildren()>0; } static bool readChildren( osgDB::InputStream& is, osg::PagedLOD& node ) { unsigned int size = 0; is >> size; if (size > 0) { is >> is.BEGIN_BRACKET; for ( unsigned int i=0; i<size; ++i ) { osg::ref_ptr<osg::Node> child = is.readObjectOfType<osg::Node>(); if ( child ) node.addChild( child ); } is >> is.END_BRACKET; } return true; } static bool writeChildren( osgDB::OutputStream& os, const osg::PagedLOD& node ) { unsigned int size=node.getNumFileNames(), dynamicLoadedSize=0; for ( unsigned int i=0; i<size; ++i ) { if ( !node.getFileName(i).empty() ) dynamicLoadedSize++; } unsigned int realSize = size-dynamicLoadedSize; os << realSize; if ( realSize>0 ) { os << os.BEGIN_BRACKET << std::endl; for ( unsigned int i=0; i<size; ++i ) { if ( !node.getFileName(i).empty() ) continue; if ( i<node.getNumChildren() ) os << node.getChild(i); } os << os.END_BRACKET; } os << std::endl; return true; } //Encapsulates the corresponding subfield name REGISTER_OBJECT_WRAPPER( PagedLOD, new osg::PagedLOD, osg::PagedLOD, "osg::Object osg::Node osg::LOD osg::PagedLOD" ) { // Note: osg::Group is not in the list to prevent recording dynamic loaded children ADD_USER_SERIALIZER( DatabasePath ); // _databasePath ADD_UINT_SERIALIZER( FrameNumberOfLastTraversal, 0 ); // _frameNumberOfLastTraversal, note, not required, removed from soversion 70 onwwards, see below ADD_UINT_SERIALIZER( NumChildrenThatCannotBeExpired, 0 ); // _numChildrenThatCannotBeExpired ADD_BOOL_SERIALIZER( DisableExternalChildrenPaging, false ); // _disableExternalChildrenPaging ADD_USER_SERIALIZER( RangeDataList ); // _perRangeDataList ADD_USER_SERIALIZER( Children ); // _children (which are not loaded from external) { UPDATE_TO_VERSION_SCOPED( 70 ) REMOVE_SERIALIZER( FrameNumberOfLastTraversal ); } }
So far, I have a basic understanding of the osgb format, but I need to be able to parse its data and analyze the serialization mechanism of other objects. Because it involves the compatibility of iterative versions, I can directly extract the read-write source code from the OSG source code as a part of the project, which can well solve the problem of version compatibility.
3. Visual scheduling optimization of tilt photography data
3.1 load a single osgb file and display it
osg::Group* root = new osg::Group; //read file osg::ref_ptr<osg::Node> n = osgDB::readNodeFile("E:/Desktop/Data/Tile_+157_+009/Tile_+157_+009.osgb"); root->addChild(n); osg::ref_ptr<osgViewer::Viewer> viewer = new osgViewer::Viewer; viewer->setSceneData(root); viewer->setUpViewInWindow(20, 20, 1400, 700); //Corresponding common keyboard key functions viewer->addEventHandler(new osgGA::StateSetManipulator(viewer->getCamera()->getOrCreateStateSet())); viewer->addEventHandler(new osgViewer::WindowSizeHandler); viewer->addEventHandler(new osgViewer::StatsHandler); viewer->realize(); return viewer->run();
To respond to common keyboard keys, you need to select an American keyboard to respond.
- s: Display model statistics, including frame rate, model vertex data, etc;
- w: Display the triangular mesh of the model;
- f: Zoom in and out of the window;
- b: Model occlusion (back) elimination;
- l: Lighting control;
3.2 visualization of large data sets for tilt photography
Data preprocessing is required, mainly using:
- Multiple root nodes can be merged for multiple times (multiple levels) and finally merged into one root node;
- Control the size of merged nodes;
- LOD generation: various strategies can be adopted, including model simplification, model reconstruction, etc;
4. Multi thread debugging method
4.1 during multi-threaded program debugging, multiple sub threads will switch alternately, and the program will be interrupted at the same breakpoint. Therefore, the debugging program becomes complex and is not easy to debug. There are two methods for debugging:
- Use one-way to debug the program;
- Specify a specific sub process and debug it: you can write a specific sub process interrupt statement (add a breakpoint in the relevant statement), or locate a specific sub process through the breakpoint. When you locate a specific sub process and cancel the breakpoint, you can try the sub process sentence by sentence;
summary
The learning of related technologies of OSG open source framework mainly focuses on the analysis, visualization and scheduling of OSGB tilt photography data.