Shape Detection
Contour detection
contours, hierarchy = cv2.findContours(image,mode,method)
- The first parameter input image,
- The second parameter represents the retrieval mode of contour, which has four types:
1.cv2.RETR_EXTERNAL means that only the outer contour is detected
2.cv2. RETR_ The contour detected by list does not establish a hierarchical relationship
3.cv2.RETR_CCOMP establishes two levels of contours. The upper layer is the outer boundary and the inner layer is the boundary information of the inner hole. If there is a connected object in the inner hole, the boundary of the object is also on the top layer.
4.cv2.RETR_TREE establishes the outline of a hierarchical tree structure. - cv2.CHAIN_APPROX_NONE stores all contour points. The pixel position difference between two adjacent points does not exceed 1, that is, max (abs (x1-x2), abs (y2-y1)) = = 1
cv2.CHAIN_APPROX_SIMPLE compresses the elements in the horizontal, vertical and diagonal directions, and only retains the end coordinates of the direction. For example, a rectangular contour only needs 4 points to save the contour information
cv2.CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS uses teh chinl chain approximation algorithm
Calculate contour area
contourArea(contour,oriented = False)
This function uses Green's formula to calculate the area of the contour. For contours with self intersection points, this function will almost certainly give wrong results.
1.contour: enter a two-dimensional vector and store it as vector(C + +) or Mat.
2.oriented: directional area sign.
- true: this function returns the value of a marked area depending on the direction of the contour (clockwise or counterclockwise).
- false: default value. Means to return an absolute value without direction.
Calculate contour length
cv2.arcLength(InputArray curve, bool closed)
- curve, the input 2D point set (contour vertex), which can be of type vector or Mat.
- Closed, used to indicate whether the curve is closed.
Multilateral fitting function
The main function is to polyline a continuous smooth curve and fit the polygon of the image contour points
cv2.approxPolyDP(InputArray curve, OutputArray approxCurve, double epsilon, bool closed)
- InputArray curve: generally, it is a point composed of contour points of the image
- OutputArray approxCurve: represents the set of polygon points to be output
- double epsilon: it mainly indicates the output accuracy, that is, the maximum distance between another contour point, 5, 6, 7, 8
- bool closed: indicates whether the output polygon is closed
Gets the smallest rectangular border
x,y,w,h = cv2.boundingRect(img)
def geContours(img): countors,Hierarchy = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) for cnt in countors: area = cv2.contourArea(cnt) print(area) if area>500: cv2.drawContours(imgContour,cnt,-1,(255,0,0),3) peri = cv2.arcLength(cnt,True) print(peri) approx = cv2.approxPolyDP(cnt,0.02*peri,True) print(len(approx)) objCor = len(approx) x,y,w,h = cv2.boundingRect(approx) #Judge shape if objCor == 3: objType = "Tri" elif objCor == 4: aspRatio = w/float(h) if aspRatio >0.95 and aspRatio <1.05: objType= "Square" else:objType="Rectangle" elif objCor>4: objType= "circles" else:objType="None" cv2.rectangle(imgContour,(x,y),(x+w,y+h),(0,255,0),2) cv2.putText(imgContour,objType, (x+(w//2)-10,y+(h//2)-10),cv2.FONT_HERSHEY_COMPLEX,0.7, (0,0,0),2)
module:
import cv2 import numpy as np def stackImages(scale,imgArray): ''' Image overlay module ''' rows = len(imgArray) cols = len(imgArray[0]) # &Output a matrix of rows * cols (imgArray) print(rows,cols) # &Determine whether imgaray [0] is a list rowsAvailable = isinstance(imgArray[0], list) # &What does imgaray [] [] mean? # &Imgrarray [0] [0] refers to the picture of [0,0] (we divide the picture set into two-dimensional matrices, and the one in the first row and column is the first picture) # &shape[1] is width, shape[0] is height, and shape[2] is height width = imgArray[0][0].shape[1] height = imgArray[0][0].shape[0] if rowsAvailable: for x in range (0, rows): for y in range(0, cols): # &Judge whether the shape of the image is consistent with that of the following image. If it is consistent, scale it in equal proportion; Otherwise, resize to be consistent first, and then zoom in and out if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]: imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale) else: imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale) # &If it is a grayscale image, it becomes an RGB image (in order to make the same image) if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR) # &Set zero matrix imageBlank = np.zeros((height, width, 3), np.uint8) hor = [imageBlank]*rows hor_con = [imageBlank]*rows for x in range(0, rows): hor[x] = np.hstack(imgArray[x]) ver = np.vstack(hor) # &If it is not a group of photos, it is only zoomed or grayscale converted to RGB else: for x in range(0, rows): if imgArray[x].shape[:2] == imgArray[0].shape[:2]: imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale) else: imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale) if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR) hor= np.hstack(imgArray) ver = hor return ver def geContours(img): countors,Hierarchy = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) for cnt in countors: area = cv2.contourArea(cnt) print(area) if area>500: cv2.drawContours(imgContour,cnt,-1,(255,0,0),3) peri = cv2.arcLength(cnt,True) print(peri) approx = cv2.approxPolyDP(cnt,0.02*peri,True) print(len(approx)) objCor = len(approx) x,y,w,h = cv2.boundingRect(approx) if objCor == 3: objType = "Tri" elif objCor == 4: aspRatio = w/float(h) if aspRatio >0.95 and aspRatio <1.05: objType= "Square" else:objType="Rectangle" elif objCor>4: objType= "circles" else:objType="None" cv2.rectangle(imgContour,(x,y),(x+w,y+h),(0,255,0),2) cv2.putText(imgContour,objType, (x+(w//2)-10,y+(h//2)-10),cv2.FONT_HERSHEY_COMPLEX,0.7, (0,0,0),2) path = 'python/OpenCVTutorial/resources/shapes.png' img = cv2.imread(path) imgContour = img.copy() imgGray = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) imgBlur = cv2.GaussianBlur(imgGray,(7,7),1) imgCanny = cv2.Canny(imgBlur,50,50) geContours(imgCanny) imgBlank = np.zeros_like(img) imgStack = stackImages(0.4,([img,imgGray,imgBlur], [imgCanny,imgContour,imgBlank])) cv2.imshow("Stack",imgStack) cv2.waitKey(0)
You can see that the last picture recognizes the shape